Инженерам Курсовик
Четверг, 09.05.2024, 11:23
Приветствую Вас Гость | RSS
 
Главная Инженерный порталРегистрацияВход
Меню сайта
Категории раздела
ПиАХТ [4]
Процессы и аппарты химических технологий расчетные задания курсовые, решения, задачи, литература
Задачи Павлов, Романков [13]
Содержит задачи по учебнику Павлов, Романков, для заказа цена задачи 100 руб
Курсовые [26]
Готовые курсовые работы по ПАХТу: теплообменник, ректификация, абсорбция, адсорбция, выпарная установка, установка осмоса, расчет циклона
ОХТ [10]
Описание тех схем основных производст для студентов КГТУ расчет мат балансов и их заказ
Детали машин [10]
Курсовые проектвы подеталям машин для заочников КГТУ (КНИТУ) и др вузов с решениями
Механические задачи для аппаратов ОРК [2]
Для механических специальностей КНИТУ
Курсовые аппарат с мешалкой [1]
Приведены курсовые проекты аппаратов с мешалкой, примеры решений, курсовые задания
МАХП [14]
Машины и аппараты химических производств
Такелаж [1]
Расчеты такелажного оборудования, подъемного оборудования по курсу МАХП КНИТУ (КГТУ)
Технологическое оборудование [1]
Технологическое оборудование контрольные работы для очников КГТУ
Холодоснабжение [1]
Калорический расчет камер, контрольные работы для КГТУ
Автоматизация [16]
Автоматизация химических технологий абсорбции ректификации, адсорбции
Контрольные по АСУТП [19]
Контрольные работы, решение и заказ для механических и технологических специальностей КНИТУ и КХТИ
Задачи Романков, Флюсюк [26]
Решение задач Романоков, Флисюк цены от 100руб, заказ он-лайн задачи в течении минуты после оплаты
Задачи ПАХТ разные [13]
Задачи по ПАХТу на теплообмен, массопередачу, абсорбцию, ректификацию сушку, выпаривание и гидромеханические процессы
Задачи по гидравлике [22]
Решение задач по гидравлике скачать и заказать недорого
Наш опрос
Оцените мой сайт
Всего ответов: 105
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Главная » 2015 » Февраль » 22 » Раздел 3 Теплопередача задачи 1-36
14:53
Раздел 3 Теплопередача задачи 1-36

3.1. Вычислить градиент температуры поперек плоской бетон­ной стенки толщиной 250 мм, если температуры ее внутренней и наружной поверхностей равны 25°С и -20°С. Определить также плотность теплового потока по закону теплопроводности Фурье и по формуле (3.7).
Скачать решение

3.2. Вычислить плотность теплового потока, температуры поверхностей контакта и градиенты температуры поперек трехслойной стенки, состоящей из слоев эмали, конструкционной стали и асбе­стовой изоляции, толщины которых 0,7; 12 и 25 мм соответствен­но. Температура внутренней поверхности слоя эмали 185°С, а на­ружного слоя асбеста 45°С. Результаты представить графически.
Скачать решение

3.3 Определить плотность конвективных тепловых потоков, которые переносятся в направлении движения: а) парами этанола атмосферного давления при скорости движения 0,90 м/с (тепло­емкость паров этанола сэ = 3,22 кДж/(кг·К)); б) жидким этано­лом, скорость движения которого 0,10 м/с. Температуры обоих по­токов одинаковы и равны температуре кипения этанола при атмо­сферном давлении.
Скачать решение

3.4 Сравнить плотности конвективных тепловых потоков переносимых жидким бутиловым спиртом при его скорости 0,060 м/с и температуре 50°С и его парами при скорости 1,30 м/с, температу­ре 200°С и абсолютном давлении 2 кгс/см2.
Скачать решение

3.5. Вычислить плотности лучистых тепловых потоков излучаемых поверхностью кирпичной кладки я поверхностью, покры­той алюминиевым лаком при 87 °С.
Скачать решение

3.6. Сравнить тепловые потоки, излучаемые поверхностью 3 м2 окисленного и оцинкованного железа при температурах 40°С и 200°С.
Скачать решение

3.7. Как увеличится термическое сопротивление стенки сталь­ной трубы диаметром 38x2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм?
Скачать решение

3.8. Определить тепловой поток, теряемый паропроводом диа­метром 51х2,5 мм и длиной 40 м, покрытым слоем теплоизоляции толщиной 30 мм, имеющей теплопроводность 0,116 Вт/(м·К); тем­пература наружной поверхности изоляции 45°С, внутренней по­верхности трубы 175°С.
Скачать решение

3.9. Вычислить часовую потерю холода с одного погонного метра стальной трубы диаметром 60х3 мм, изолированной слоями проб­ки толщиной 30 мм и совелита толщиной 40 мм. Температуры внутренней поверхности трубы -110°С и наружной поверхности совелита 10°С.
Скачать решение

3.10. Вычислить теплопроводность: а) жидкого хлороформа при 20°С; б) диоксида серы при 160°С и атмосферном давлении; в) 25 % -го водного раствора хлорида кальция при 30°С.
Скачать решение

3.11. При атмосферном давлении испаряется 1650 кг/ч толуо­ла, подаваемого в кипятильник при температуре кипения. Опре­делить необходимый расход греющего водяного пара: а) сухого насыщенного при избыточном давлении 0,40 МПа; б) перегретого до 250°С, ризб = 0,40 МПа. Принять удельную теплоемкость пере­гретого водяного пара с = 2,14 кДж/(кг·К). Конденсат греющего пара отводится при температуре конденсации.
Скачать решение

3.12. До какой температуры можно нагреть 2 т раствора, если расход глухого пара давлением риз6 = 3 кгс/см2 составил 200 кг за 2,5 ч? Расход теплоты на нагрев массы аппарата и на потери в ок­ружающую среду составил 2,03 кВт. Начальная температура рас­твора 10 °С. Удельная теплоемкость раствора 2,50 кДж/(кг·К).
Скачать решение

3.13. Определить тепловой поток, передаваемый в конденса­торе, где при атмосферном давлении конденсируется 850 кг/ч па­ра сероуглерода. Пар поступает при 90°С, жидкий сероуглерод выходит переохлажденным на 8 К. Удельная теплоемкость пара 0,67 кДж/(кг·К).
Скачать решение

3.14. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением рабс = 60 кгс/см2. Жидкий диоксид углерода выходит из конденсатора при температуре конденсации (21 °С). Начальная температура воды 10 °С, конечная температура воды на 5 К ниже температуры кон­денсации. Определить необходимый расход воды.
Скачать решение

3.15. Определить изменение коэффициентов теплопередачи в теплообменном аппарате, изготовленном из стальных труб с тол­щиной стенки 3 мм, если на поверхности труб отложится слой во­дяного камня толщиной 2 мм: а) в водяном холодильнике для га­за, в котором аг = 58 Вт/(м2·К), ав = 580 Вт/(м2·К); б) в выпарном аппарате, в котором аг.п = 11600 Вт/(м2·К), ар = 2780 Вт/(м2·К).
Скачать решение

3.16. Определить плотность теплового потока в атмосферном испарителе толуола, если стальные трубы толщиной 4 мм с обеих сторон покрыты слоями ржавчины толщиной 0,6 мм каждый. Обогрев производится насыщенным водяным паром с избыточным давлением 3 кгс/см2. Термическими сопротивлениями теплоотда­чи со стороны пара и толуола пренебречь. Стенки считать плоскими
Скачать решение

3.17. Выходящий из выпарного аппарата концентрированный раствор с температурой 106°С используется для подогрева исход­ного раствора, поступающего в одноходовой подогреватель с тем­пературой 15°С и нагревающегося до 50°С. Концентрированный горячий раствор охлаждается до 60°С. Определить средние разности темпера­тур теплоносителей для случаев пря­моточного и противоточного движения.
Скачать решение

3.18. Вычислить среднюю разность температур теплоносителей в четырехходовом теплообменнике (рис. 3.30). В межтрубном пространстве, имеющем один ход, охлаждается толуол от 106°С до 30°С; по трубам проходит вода, нагреваясь от 10 до до 34°С

Романков, Флисюк задача 3.18

Рис. 3.30 – Четырехходовой теплообменный аппарат без перегородок в межтрубном пространстве.
Скачать решение

3.19. Определить необходимую теплопередающую поверхность противоточного теплообменника, в котором охлаждается 1930 кг/ч бутилового спирта от 90 до 50°С. Охлаждение производится водой, расход которой 4,21 м3/ч и начальная температура 18°С. Коэффици­ент теплопередачи для теплообменника принять К = 230 Вт/(м2·К).
Скачать решение

3.20. Достаточна ли поверхность кожу хот рубчатого теплооб­менника, состоящего из 19 латунных труб диаметром 18х2 мм и длиной 1,2 м, для конденсации 350 кг/ч насыщенного пара этило­вого спирта при коэффициенте теплопередачи К = 700 Вт/(м2·К), начальной и конечной температуре воды 15 и 35 °С? Конденсация происходит при атмосферном давлении, переохлаждение конден­сата отсутствует.
Скачать решение

3.21. В трубное пространство кожухотрубчатого одноходового теплообменника, имеющего поверхность теплопередачи F = 360 м2, поступает 10 т/ч горячего газа с температурой 560 °С удельной теп­лоемкостью 1,05 кДж/(кг·К). В межтрубном пространстве очи­щенный газ колчеданной печи нагревается от 300 до 430°С. Поте­ри теплоты составляют 10% от количества теплоты, получаемой нагревающимся газом. Определить значение коэффициента тепло­передачи.
Скачать решение

3.22. Вычислить значение коэффициента теплопередачи в те­плообменнике с поверхностью теплопередачи 48 м2 при подогреве в нем 85,5 т/ч воды от 77 до 95°С насыщенным водяным паром при рабс = 230 кПа.
Скачать решение

3.23. Определить необходимую поверхность противоточного теплообменника и расход воды при охлаждении 0,85 м3/ч сероугле­рода от температуры кипения под атмосферным давлением до 22°С. Охлаждающая вода нагревается от 14 до 25°С. Коэффициенты теплоотдачи от сероуглерода а1=270 Вт/(м2·К) и к воде а2=720Вт/(м2·К). На стальной стенке теплообменника толщиной 3 мм имеются слои накипи и ржавчины, суммарное термическое сопротивление которых r = 0,69·10-3 (м2·К)/Вт.
Скачать решение

3.24. Вычислить необходимые расходы воды и воздуха и по­верхности теплопередачи при конденсации 2,78 кг/с насыщенно­го пара n-гексана при 70°С без переохлаждения конденсата. От­вод теплоты конденсации производится: а) водой, которая нагре­вается от 16 до 36°С; б) воздухом, который нагревается от 25 до 48 °С. Коэффициент теплоотдачи от конденсирующегося сероуг­лерода для обоих случаев а1=1700 Вт/(м2·К), а для воды и воз­духа - принимаются по табл. 3.3: для воды - при турбулентном течении по трубам, для воздуха - при поперечном обтекании труб. Удельная теплота конденсации гексана 333 кДж/кг.
Скачать решение

3.25. Вычислить значение коэффициента теплоотдачи в труб­ном пространстве одноходового теплообменника, где по 19 трубам диаметром 16x2 мм проходит 3,7 т/ч метилового спирта. На­чальная и конечная температуры спирта 10 и 50°С; температура внутренней поверхности труб 60°С.
Скачать решение

3.26. По межтрубному пространству кожухотрубчатого тепло­обменника параллельно трубам со скоростью 4,6 м/с проходит метан под избыточным давлением 5 кгс/см2 при средней темпе­ратуре 75°С. Определить значение коэффициента теплоотдачи между метаном и наружной поверхностью 37 стальных труб диаметром 18х2 мм, заключенных в кожух внутренним диаметром 190мм.
Скачать решение

3.27. Определить коэффициент теплоотдачи между водой и внутренней стенкой трубы диаметром 46х3 мм при скорости во­ды 0,70 м/с и средней ее температуре 46°С. Температура внут­ренней поверхности стенки 90°С.

Скачать решение

3.28. Определить коэффициент теплоотдачи между наружной поверхностью труб и воздухом, охлаждаемым при избыточном давлении 0,1 МПа от 90 до 30°С в межтрубном пространстве ко­жухотрубчатого теплообменника с поперечными перегородками и трубами диаметром 25x2 мм, расположенными в шахматном порядке. Скорость воздуха в вырезе перегородки 8,0 м/с.
Скачать решение

3.29. Воздух при атмосферном давлении нагревается конден­сирующимся насыщенным водяным паром в кожухотрубчатом те­плообменнике с трубками диаметром 25х2 мм. Средняя темпера­тура воздуха 60°С. Вычислить значения коэффициентов теплопе­редачи для случаев: а) воздух со скоростью 10 м/с проходит по трубам, а греющий пар конденсируется в межтрубном простран­стве; б) воздух проходит по межтрубному пространству со скоро­стью 10 м/с в вырезе перегородки, а пар конденсируется внутри труб. Коэффициент теплоотдачи от пара для обоих случаев при­нять одинаковым и равным 11,6 кВт/(м2·К).

Скачать решение

3.30. При теплообмене двух турбулентных потоков для перво­го и второго потоков а1=230 и а2=400Вт/(м2·К). Определить, во сколько раз увеличится значение коэффициента теплопередачи, если скорость первого потока возрастет в 2 раза, а скорость второ­го - в 3 раза при прочих неизменных условиях. (Термическими сопротивлениями загрязнений и стенки пренебречь.)
Скачать решение

3.31. Определить значение коэффициента теплоотдачи от 98 % -и серной кислоты, проходящей по кольцевому пространству гори­зонтального теплообменника "труба в трубе" со скоростью 0,90 м/с и со средней температурой 72°С. Температура поверхности стенки 58°С. Диаметры труб 54х4,5 и 26х3 мм.
Скачать решение

3.32. Вычислить значение коэффициента теплоотдачи для 23,8%-го раствора хлорида кальция, который со скоростью 0,50 м/с проходит по трубному пространству при средней температуре -20°С. Температура поверхности трубы, соприкасающейся с раствором, -10°С; диаметр труб 25х2 мм, длина 4,0 м. Температурный коэффициент объемного расширения раствора принять равным 0,35·10-8К-1.
Скачать решение

3.33. Определить коэффициент теплоотдачи при нагреве четыреххлористого углерода, проходящего по трубному пространству горизонтального кожухотрубчатого теплообменника при средней температуре 26°С и скорости 0,1.5 м/с. Температура внутренней поверхности трубы диаметром 25х2 мм равна 34°С.
Скачать решение

3.34. Определить коэффициент теплоотдачи от внутренней стен­ки трубы длиной 3,0 м и диаметром 0,021 м, в которой со скоростью 0,30 м/с проходит 21,2 %-й раствор хлорида натрия, имеющий температурный коэффициент объемного расширения 3,5·10-8К-1 и нагревающийся от -15 до -12°С. Температура внутренней стен­ки трубы -6,5°С.
Скачать решение

3.35. Сравнить значения коэффициентов теплоотдачи от бен­зола к внутренней поверхности горизонтальной и вертикальной (движение снизу вверх) трубы диаметром 25x2 мм и длиной 4,0 м при скорости бензола 0,050 м/с и его средней температуре 50 °С. Температура внутренней поверхности трубы 30°С.
Скачать решение

3.36. Определить коэффициент теплоотдачи от наружной по­верхности горизонтальной трубы внешним диаметром 76 мм в ус­ловиях естественной конвекции. Средняя температура воды 25 °С, температура поверхности трубы 45 С.
Скачать решение

Категория: Задачи Романков, Флюсюк | Просмотров: 5252 | Добавил: Pingvin | Теги: Онлайн, задач он-ланйн ПАХТ, решение | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
Вход на сайт
Поиск
Календарь
«  Февраль 2015  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
232425262728
Архив записей
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Copyright MyCorp © 2024